FDM BEM FEM

Finite Difference Method (FDM) Boundary Element Method (BEM) and Finite Element Method (FEM) Draft presentation for solving Poisson's equation in 2D space

Poisson's equation is a partial differential equation with broad utility in electrostatics, mechanical engineering and theoretical physics.

$$\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + f(x_1, x_2) = 0$$

For vanishing f, this equation becomes Laplace's equation.

We consider a Dirichlet boundary condition on Γ_u and a Neumann boundary condition on Γ_q :

where u_0 and q_0 are given functions defined on those portions of the boundary.

In some simple cases (shape of the domain Ω and boundary conditions) the Poisson equation may be solved using analytical methods.

Finite Difference Method

Finite-difference method approximates the solution of differential equation by replacing derivative expressions with approximately equivalent difference quotients. That is, because the first derivative of a function f(x) is, by definition,

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h},$$

then a reasonable approximation for that derivative would be to take

$$f'(a) \approx \frac{f(a+h) - f(a)}{h}$$
 (difference quotient)

for some small value of h. Depending on the application, the spacing h may be variable or held constant.

The approximation of derivatives by finite differences plays a central role in finite difference methods

In similar way it is possible to approximate the first partial derivatives using forward, backward or central differences

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{\Delta^2 u}{\Delta x^2} = \frac{u_{i+1,k} - 2u_{i,k} + u_{i-1,k}}{h^2}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} \approx \frac{\Delta^4 u}{\Delta x^4} = \frac{u_{i+2,j} - 4u_{i+1,j} + 6u_{i,j} - 4u_{i-1,j} + u_{i-2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} \approx \frac{\Delta^4 u}{\Delta x^4} = \frac{u_{i+2,j} - 4u_{i+1,j} + 6u_{i,j} - 4u_{i-1,j} + u_{i-2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} \approx \frac{\Delta^4 u}{\Delta x^4} = \frac{u_{i+2,j} - 4u_{i+1,j} + 6u_{i,j} - 4u_{i-1,j} + u_{i-2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} \approx \frac{\Delta^4 u}{\Delta x^4} = \frac{u_{i+2,j} - 4u_{i+1,j} + 6u_{i,j} - 4u_{i-1,j} + u_{i-2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} \approx \frac{\Delta^4 u}{\Delta x^4} = \frac{u_{i+2,j} - 4u_{i+1,j} + 6u_{i,j} - 4u_{i-1,j} + u_{i-2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} \approx \frac{\Delta^4 u}{\Delta x^4} = \frac{u_{i+2,j} - 4u_{i+1,j} + 6u_{i,j} - 4u_{i-1,j} + u_{i-2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} \approx \frac{\Delta^4 u}{\Delta x^4} = \frac{u_{i+2,j} - 4u_{i+1,j} + 6u_{i,j} - 4u_{i-1,j} + u_{i-2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} \approx \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+1,j} + 6u_{i,j} - 4u_{i-1,j} + u_{i-2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} \approx \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+1,j} + 6u_{i,j} - 4u_{i+1,j} + u_{i-2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} \approx \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+1,j} + 6u_{i,j} - 4u_{i+1,j} + u_{i+2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} \approx \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+1,j} + 6u_{i,j} - 4u_{i+1,j} + u_{i+2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+1,j} + 6u_{i+2,j} - 4u_{i+1,j} + u_{i+2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+2,j} - 4u_{i+2,j} - 4u_{i+2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+2,j} - 4u_{i+2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+2,j} - 4u_{i+2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+2,j}}{h^4}, \qquad \qquad \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u_{i+2,j}}{h^4}, \qquad \qquad \qquad \frac{\partial^4 u}{\partial x^4} = \frac{u_{i+2,j} - 4u$$

Using the finite differences we can approximate the partial differential equation at any point (x_i, y_j) by an algebraic equation . In the case of Poissons equation:

$$\frac{1}{h^2} \Big(u_{i+1,j} - 2u_{i,j} + u_{i-1,j} \Big) + \frac{1}{g^2} \Big(u_{i,j+1} - 2u_{i,j} + u_{i,j-1} \Big) + f \Big(x_i, y_j \Big) = 0 \,.$$

If h = g i $f \equiv 0$ (Laplace equation) we get

$$u_{i,j} = \frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{4}$$

N grid points in the domain $\boldsymbol{\Omega}$, N equations, N unknown values

 $[A]{u}={b}$

discrete form of boundary conditions

In the case of irregular boundary shape a) assumed $u_1 = \frac{hu_0 + \delta u_2}{h + \delta}$ instead of $u = u_0$ b) assumed $u_1 = \frac{hu_0 - \delta u_2}{h - \delta}$ instead of $u = u_0$ Finite element method I - lecture notes. FDM-BEM-FEM

Boundary Element Method

Uses the boundary integral equation (equivalent to the Poisson's equation with the adequate b.c.)

$$c(\overline{\xi})u(\overline{\xi}) = -\int_{\Gamma} u(x)q^{*}(\overline{\xi},\overline{x})d\Gamma(x) + \int_{\Gamma} \frac{\partial u(\overline{x})}{\partial \overline{n}}u^{*}(\overline{\xi},\overline{x})d\Gamma(\overline{x}) + \int_{\Omega} f(x)u^{*}(\overline{\xi},\overline{x})dR(\overline{x})$$

$$c(\overline{\xi}) - \text{ coefficient equal to 1/2 on the smooth contour, 1 inside the domain }\Omega$$
Kernel functions
$$u^{*} = (\overline{\xi},\overline{x}) = \frac{1}{2\pi} \ln\left(\frac{1}{r}\right),$$

$$r = \sqrt{(x_{1} - \frac{x}{\zeta_{1}})^{2} + (x_{2} - \frac{x}{\zeta_{2}})^{2}}.$$

$$q^{*}(\overline{\xi},\overline{x}) = \frac{\partial u^{*}(\overline{\xi},\overline{x})}{\partial n}.$$

$$q^{*} = \frac{\partial u^{*}}{\partial x_{1}} \cdot n_{1} + \frac{\partial u^{*}}{\partial x_{2}} \cdot n_{2},$$

$$q^{*} = \frac{-(t_{1}^{*} \cdot h_{1} + t_{2}^{*} \cdot n_{2})}{2\pi r^{2}}.$$

$$\frac{\partial r}{\partial x_{1}} = \frac{x_{1} - \frac{x}{\tau_{1}}}{r} = \frac{r}{r}.$$

The boundary integral equation states the relation between $u(\bar{x})$ and its derivative in normal direction $q(\bar{x}) = \frac{\partial u(\bar{x})}{\partial \bar{n}}$ on the boundary Γ .

The numerical approach

- 1. Discretization of the boundary (LE boundary elements)
- **2.** Approximation of $u(\overline{x})$ and $q(\overline{x})$ on the boundary
- (e.g. u(P_i), q(P_i) constant on boundary elements)
- 3. Building the set of linear equations

$$\frac{1}{2}u(P_i) = \sum_{j=1}^{LE} \int_{\Gamma_j} u^*(P_i, \overline{x}) q(P_j) d\Gamma_j - \sum_{j=1}^{LE} \int_{\Gamma_j} q^*(P_i, \overline{x}) u(P_j) d\Gamma_j d\Gamma_j + \int_{\Omega} f(\overline{x}) u^*(P_i, \overline{x}) dR \qquad i = 1, 2, ..LE$$

$$\frac{1}{2}u(P_i) = \sum_{j=1}^{LB} U_{ij}^* \cdot q(P_j) - \sum_{j=1}^{LB} Q_{ij}^* \cdot u(P_j) + f_i, \qquad i = 1, 2...LE \cdot f_i = \int_{\Omega} f(\overline{x})u^*(P_i, \overline{x})d\Omega(\overline{x})$$
$$\frac{1}{2} \{u\} = \left[U^* \right] \{q\} - \left[Q^* \right] \{u\} + \{f\}.$$

LE linear equations with the unknows $u(P_i)$ (if the point $P_i \in \Gamma_a$) or $q(P_i)$ (if $P_i \in \Gamma_a$)

Finally:

 $[A] \{y\} = \{b\}$

The solution $\{y\}$ represents unknown boundary values of u and q.

The matrix A - full, unsymmetric

4. Solution - provides complete information about the function $u(\bar{x})$ and its derivative $q(\bar{x})$ on the boundary

Boundary Element Method reduces the number of unknown parameters (DOF of the discrete model) in comparison to FDM and FEM (domain methods).

Finite Element Method

Equivalent problem of minimising of the functional:

$$I(u) = \frac{1}{2} \int_{\Omega} \left[\left(\frac{\partial u}{\partial x_1} \right)^2 + \left(\frac{\partial u}{\partial x_2} \right)^2 - 2f(x_1, x_2) u \right] d\Omega - \int_{\Gamma_q} q_0 u d\Gamma$$

with the Dirichlet b. c.

$$u(\overline{x}) = u_0, \qquad \overline{x} \in \Gamma$$

1. Discretization of the solution domain Ω into elements Ω_e

e=1,..., NOE- number of elements connected in the nodes

$$\Omega = \bigcup_{e=1}^{N\!O\!E}\!\Omega_e \qquad \mathrm{i} \qquad \Omega_i \cap \Omega_j = 0 \qquad \quad i \neq j \,,$$

2. Approximation of function $u(\bar{x})$ within the finite element in the form of polynomials dependent on the unknown nodal values u_i

$$u(x_1, x_2) = \sum_{i=1}^{n} N_i(x_1, x_2) u_i$$

n – number of nodes of the element

 u_i , i = 1, ..., n - nodal values of the approximated function,

 $N_i(x_1, x_2)$ – shape functions

3. Discrete form of the functional

$$I(u) \cong \sum_{e=1}^{NOE} \frac{1}{2} \int_{\Omega_e} \left[\left(\frac{\partial u}{\partial x_1} \right)^2 + \left(\frac{\partial u}{\partial x_2} \right)^2 - 2f(x_1, x_2) u \right] d\Omega_e - \sum_{j=1}^{NOEdges} \int_{\Gamma_j} q_0 u d\Gamma_j$$

approximation of the function u(x,y) over the element Ω_e

In each element

$$\frac{\partial u}{\partial x_1} = \sum_{i=1}^n \frac{\partial N_i}{\partial x_1} u_i$$
$$\frac{\partial u}{\partial x_2} = \sum_{i=1}^n \frac{\partial N_i}{\partial x_2} u_i$$

In this way the functional I is replaced by the function of several unknows $u_i=1, 2, ..., NON$, where NON denotes the number of nodes of the finite element mesh. In the matrix form :

Necessary (and sufficient) condition of the minimum:

$$\frac{\partial I}{\partial u_i} = 0, \qquad i = 1, 2, \dots, NON.$$

Hence

$$[K]{u} = {b}, (+ \text{Dirichlet b.c.})$$

Set of the simultaneous equations with unknown nodal values of the investigated function.

matrix: sparse, symmetrical, positive defined, banded